

2025 Pipeline Safety Conference IUC Gas Inspector Presentation

Outline

- 1. Introductions
- 2. Safety Moment
- 3. Preparation for Inspections
- 4. Common Probable Violations (PVs)
 - a. 49 CFR 192.147(a)
 - b. 49 CFR 192.355(b)(2)
 - c. 49 CFR 192.357(a)
 - d. 49 CFR 192.455(a)
 - e. 49 CFR 192.481(b)
 - f. 49 CFR 192.481(c)
- 5. Responses to Inspection Reports
- 6. Questions

Safety Moment

Gas Inspection Safety

- Minimize vehicles in the inspection "convoy"
- Be mindful of traffic when stopping at TBS/DRS or any facilities along busy roadways
- Practice situational awareness be aware of your surroundings
- Hi-Vis vests and other PPE

Preparation for Inspections

Before the inspection begins...

☑ Review the program(s) to be inspected

Ask for the question set, if needed

☑ Get the right people in the room knowledgeable about the system and program(s) to answer questions

☑ Have records, procedures, O&M, OQ, One Call responses, or program materials readily available for review

Common Probable Violations (PVs)

"Short Bolts"

§192.147 Flanges and Flange Accessories.

(a) Each flange or flange accessory (other than cast iron) must meet the minimum requirements of ASME/ANSI B16.5, ANSI/MSS SP-44, or the equivalent.

Example of short bolts identified in 2024 inspection

- Why do short bolts matter? For pipeline components to function *as designed*, they must be installed *as designed*.
- Stud bolt length requirements are dictated by standards incorporated by reference
- Typically two threads showing past the hex nut for tapered threads
- Refer to O&M or manufacturers' specifications

Before and After...

Iowa Utilities Commission

Before and After...

"Vent Location"

§192.355 Customer meters and regulators: Protection from damage

(b) Service regulator vents and relief vents must terminate outdoors, and the outdoor terminal must -

(2) Be located at a place where gas from the vent can escape freely into the atmosphere and away from any opening into the building

Example of vent near window

- What's wrong with a vent by a building opening?
 - If relief activates, the gas may vent into or accumulate inside the structure, creating a hazardous environment
 - Refer to O&M for acceptable distance from building opening - typically 3 feet
- "Escape freely into the atmosphere"?
 - If gas becomes trapped or contained, it may cause an accumulation of gas above the lower explosive limit (LEL)
 - Decks and other structures may prevent gas from venting freely away from buildings

If this relief opens, can the gas vent freely to atmosphere?

Before and After...

I owa Utilities Commission

Before and After...

"Stressed Pipe"

- §192.357 Customer meters and regulators: Installation
 - (a) Each meter and each regulator must be installed so as to minimize anticipated stresses upon the connecting pipe and the meter.

Example of stressed meter piping

- What's wrong with stressed pipe?
 - Additional strain on metal piping can degrade strength over time
 - \circ Uneven wear
 - Additional stress and strain on fittings, increased potential for leaks or other issues
- Culprits
 - Ground movement
 - Vibrations
 - Time
 - Lacking pipe supports

Example of stressed meter piping

Before and After...

Before and After...

I Owa Utilities Commission

"Buried Crimp"

§192.455 External corrosion control: Buried or submerged pipelines installed after July 31, 1971

- (a) With limited exceptions, each buried or submerged pipeline installed after July 31, 1971, must be protected against external corrosion, including the following"
 - (1) ... external protective coating
 - (2) ...cathodic protection system installed and placed in operation within one year after completion of construction

Example of buried anodeless riser crimp identified in 2024 inspection

- What's wrong with a buried crimp?
 - For anodeless risers, the steel portion directly above the crimp is buried and is **not** properly protected against external corrosion
- Creation of an isolated segment that would require cathodic protection
- Culprits: landscaping, accumulation of debris in protective sleeves, buried over time

Example of buried crimp identified in 2024 inspection

Before and After...

I owa Utilities Commission

Before and After...

I Owa Utilities Commission

Before and After...

Before and After...

"Coating and Wrap Issues"

§192.481 Atmospheric corrosion control: Monitoring.

(b) During inspections the operator must give particular attention to pipe at *soil-to-air interfaces,* under thermal insulation, *under disbonded coatings,* at pipe supports, in splash zones, at deck penetrations, and in spans over water.

Example of damaged wrap at soil-to-air interface

- What's wrong with a bad wrap or coating?
 - Not protecting bare steel from elements that lead to atmospheric corrosion
 - Could allow moisture to become trapped or to pool, creating a corrosion cell and ultimately metal loss if not remediated
- Culprits: Manufacturer coating peeling or chipping, general wear and tear over time, external damage, UV degradation

Example of damaged coating identified in 2024 inspection

Before and After...

Before and After...

I Owa Utilities Commission

"Atmospheric Corrosion Inspections"

§192.481 Atmospheric corrosion control: Monitoring.

(b) During inspections, give particular attention to pipe at soil-to-air interfaces, *under thermal insulation, under disbonded coatings, at pipe supports, in splash zones, at deck penetrations, and in spans over water.*

Example of Pipe Support

During Atmospheric Corrosion inspections or surveys, pay attention to...

- Soil-to-Air Interface:
 - Moisture/electrolytes from soil contribute to corrosion cell
- Thermal Insulation and Disbonded Coatings:
 - Moisture accumulates against pipe wall and cannot dissipate, creating corrosion cell
- Pipe Supports:
 - Potentially dissimilar metals
 - Point of contact can create corrosion cell
- Spans Over Water:
 - Bridge supports can cause issues similar to other pipe supports

Inspect Under Insulation

Bridge Support

Disbonded Coating

I Owa Utilities Commission

Inspect Soil-to-Air Interface?

Inspect Soil-to-Air Interface?

Before and After...

Iowa Utilities Commission

Before and After...

"Active Corrosion"

§192.481 Atmospheric corrosion control: Monitoring.

(c) If atmospheric corrosion is found during an inspection, the operator must provide protection against the corrosion as required by §192.479.

Metal Loss on Service Valve

- Atmospheric Corrosion Issues:
 - Metal loss, like pitting, impacts integrity of pipeline or pipeline component
 - If metal loss is significant, MAOP may need to be lowered
- Culprits:
 - Dissimilar metals (pipe supports, for example)
 - Soil-to-air interface
 - Moisture accumulation under insulation, wraps
 - Pressure cut creating temperature drop and condensation
 - Time

Example of atmospheric corrosion at meter set

I Owa Utilities Commission

Before and After...

I owa Utilities Commission

Before and After...

Preventive Maintenance

- Look for issues during your regular inspections
 - Atmospheric corrosion survey
 - Business District surveys
 - Patrols
- Keep things in good condition paint, wraps and coating, etc.
- Utilize forms and other tools in O&M
- Corrosive atmospheres
 - Know where they are from previous inspections
 - Do extra inspections if needed

IUC: Inspection Report and Notice Letter Operator: Inspection Response

IUC: Follow-up Report

- Filed in EFS email to Service List (Inspector can assist)
- Details of inspection findings
- Probable Violations
- Advisories
- Requirement to respond in EFS within 30 days of date of letter

IUC Customer Service 515-725-7300

- File in EFS within 30 days of Notice Letter
- Address each Probable
 Violation or Advisory
 separately, with a label
- Photos or other evidence of compliance
- Plans to become compliant, with reasonable timeline
- If responding to a unit inspection, include unit name in filing title

- Each outstanding Probable Violation or Advisory addressed
- Cleared no further action needed
- Cannot be Cleared pending further documentation or demonstration of compliance, etc.

What is a "Reasonable" Timeline to Address Issues?

- Field Issue: Typically within one construction season
- Records Issue: Dictated by record frequency
 - Example: Annual emergency valve maintenance and operation
- Communicate, in detail, if there are extenuating circumstances

Components of a GREAT Operator Response

AT 30 DAYS	INCLUDES	EXAMPLE
Probable Violation or Advisory has been resolved or addressed	 Description of how each probable violation or advisory was addressed Clear photo or record showing the work done to achieve compliance 	<i>PV 192.147(a):</i> Strickland Natural Gas replaced the flange bolts at DRS #2 on May 1, 2024, as shown in the attached photo.
Additional time is needed to correct issue	 Plan of Action: Description of <i>what</i> work is planned to address the issue Anticipated <i>date</i> for when work will be complete Follow-up with filing 	<i>PV 192.615(a)(2):</i> Strickland has scheduled a liaison meeting with local officials and emergency responders for April 1, 2025. Documentation will be filed in EFS within 30 days of the meeting.

Documentation should be clear and/or legible

Documentation should be clear and/or legible - before and after

Documentation and records should be legible

		Utility Name		
-h	VALVE INSPEC	TION & MAINTENANC	E LOG	
arve No				
DATE	FLEX	LUBE AMOUNT	BY	٦
DATE	FLEX V8 Twn	LUBE AMOUNT	ВҮ	
DATE 11/4/14 7/17/15	FLEX Vg Twon Vg Twon	LUBE AMOUNT	ВҮ	
DATE 11/4/14 7/17/15 7/13/16	FLEX Vg Twn Ys Turn Ys Turn	LUBE AMOUNT	BY	

Responses with more questions than answers:

What is the material of vent piping?

Is the diameter sufficient to support full relief capacity?

Difficult to see the interconnect between the regulator vent and the piping to extend the relief away from the window and deck.

A Iowa Utilities Commission

Responses with more questions than answers:

Responses with more questions than answers:

Coating is still damaged?

Responses with more questions than answers:

Was the soil-to-air interface wrapped?

Gas Program Resources

- Resources
 - GTI Energy
 - IAMU
 - o IUC
 - Paradigm
 - USDI
- Ultimately, the **gas operator** is responsible for the operation, maintenance, and understanding of its gas system in accordance with Part 192

Questions?

Contact Information

Dan O'Connor Gas Inspector dan.oconnor@iuc.iowa.gov 515-380-5082 Darin Tolzin Gas Inspector darin.tolzin@iuc.iowa.gov 515-681-5665 Greg Witzenburg Gas Inspector/One Call Investigator gregory.witzenburg@iuc.iowa.gov 515-528-6933

Paul Hansen Gas Inspector paul.hansen@iuc.iowa.gov 515-782-9027 Wayne Andersen Gas Inspector wayne.andersen@iuc.iowa.gov 515-745-4103 Eric Brown Gas Inspector eric.brown@iuc.iowa.gov 515-681-1353